22 research outputs found

    Detecting and Explaining Causes From Text For a Time Series Event

    Full text link
    Explaining underlying causes or effects about events is a challenging but valuable task. We define a novel problem of generating explanations of a time series event by (1) searching cause and effect relationships of the time series with textual data and (2) constructing a connecting chain between them to generate an explanation. To detect causal features from text, we propose a novel method based on the Granger causality of time series between features extracted from text such as N-grams, topics, sentiments, and their composition. The generation of the sequence of causal entities requires a commonsense causative knowledge base with efficient reasoning. To ensure good interpretability and appropriate lexical usage we combine symbolic and neural representations, using a neural reasoning algorithm trained on commonsense causal tuples to predict the next cause step. Our quantitative and human analysis show empirical evidence that our method successfully extracts meaningful causality relationships between time series with textual features and generates appropriate explanation between them.Comment: Accepted at EMNLP 201

    CharManteau: Character Embedding Models For Portmanteau Creation

    Full text link
    Portmanteaus are a word formation phenomenon where two words are combined to form a new word. We propose character-level neural sequence-to-sequence (S2S) methods for the task of portmanteau generation that are end-to-end-trainable, language independent, and do not explicitly use additional phonetic information. We propose a noisy-channel-style model, which allows for the incorporation of unsupervised word lists, improving performance over a standard source-to-target model. This model is made possible by an exhaustive candidate generation strategy specifically enabled by the features of the portmanteau task. Experiments find our approach superior to a state-of-the-art FST-based baseline with respect to ground truth accuracy and human evaluation.Comment: Accepted for publication in EMNLP 201

    Likelihood Ratios and Generative Classifiers for Unsupervised Out-of-Domain Detection In Task Oriented Dialog

    Full text link
    The task of identifying out-of-domain (OOD) input examples directly at test-time has seen renewed interest recently due to increased real world deployment of models. In this work, we focus on OOD detection for natural language sentence inputs to task-based dialog systems. Our findings are three-fold: First, we curate and release ROSTD (Real Out-of-Domain Sentences From Task-oriented Dialog) - a dataset of 4K OOD examples for the publicly available dataset from (Schuster et al. 2019). In contrast to existing settings which synthesize OOD examples by holding out a subset of classes, our examples were authored by annotators with apriori instructions to be out-of-domain with respect to the sentences in an existing dataset. Second, we explore likelihood ratio based approaches as an alternative to currently prevalent paradigms. Specifically, we reformulate and apply these approaches to natural language inputs. We find that they match or outperform the latter on all datasets, with larger improvements on non-artificial OOD benchmarks such as our dataset. Our ablations validate that specifically using likelihood ratios rather than plain likelihood is necessary to discriminate well between OOD and in-domain data. Third, we propose learning a generative classifier and computing a marginal likelihood (ratio) for OOD detection. This allows us to use a principled likelihood while at the same time exploiting training-time labels. We find that this approach outperforms both simple likelihood (ratio) based and other prior approaches. We are hitherto the first to investigate the use of generative classifiers for OOD detection at test-time.Comment: Accepted for AAAI-2020 Main Trac

    NAREOR: The Narrative Reordering Problem

    Full text link
    Many implicit inferences exist in text depending on how it is structured that can critically impact the text's interpretation and meaning. One such structural aspect present in text with chronology is the order of its presentation. For narratives or stories, this is known as the narrative order. Reordering a narrative can impact the temporal, causal, event-based, and other inferences readers draw from it, which in turn can have strong effects both on its interpretation and interestingness. In this paper, we propose and investigate the task of Narrative Reordering (NAREOR) which involves rewriting a given story in a different narrative order while preserving its plot. We present a dataset, NAREORC, with human rewritings of stories within ROCStories in non-linear orders, and conduct a detailed analysis of it. Further, we propose novel task-specific training methods with suitable evaluation metrics. We perform experiments on NAREORC using state-of-the-art models such as BART and T5 and conduct extensive automatic and human evaluations. We demonstrate that although our models can perform decently, NAREOR is a challenging task with potential for further exploration. We also investigate two applications of NAREOR: generation of more interesting variations of stories and serving as adversarial sets for temporal/event-related tasks, besides discussing other prospective ones, such as for pedagogical setups related to language skills like essay writing and applications to medicine involving clinical narratives.Comment: Accepted to AAAI 202
    corecore